• Kogasa@programming.dev
    link
    fedilink
    arrow-up
    2
    ·
    4 months ago

    Still not enough, or at least pi is not known to have this property. You need the number to be “normal” (or a slightly weaker property) which turns out to be hard to prove about most numbers.

      • barsquid@lemmy.world
        link
        fedilink
        arrow-up
        1
        ·
        4 months ago

        “Nearly all real numbers are normal (basically no real numbers are not normal), but we’re only aware of a few. This one literally non-computable one for sure. Maybe sqrt(2).”

        Gotta love it.

        • CanadaPlus@lemmy.sdf.org
          link
          fedilink
          arrow-up
          2
          ·
          edit-2
          4 months ago

          We’re so used to dealing with real numbers it’s easy to forget they’re terrible. These puppies are a particularly egregious example I like to point to - functions that preserve addition but literally black out the entire x-y plane when plotted. On rational numbers all additive functions are automatically linear, of the form mx+n. There’s no nice in-between on the reals, either; it’s the “curve” from hell or a line.

          Hot take, but I really hope physics will turn out to work without them.