

Undefined is more precise. 0/0 being an “indeterminate form” refers to expressions of the form lim(x->c) f(x)/g(x) where lim(x->c)f(x) = lim(x->c)g(x) = 0.
Undefined is more precise. 0/0 being an “indeterminate form” refers to expressions of the form lim(x->c) f(x)/g(x) where lim(x->c)f(x) = lim(x->c)g(x) = 0.
This doesn’t clearly identify a problem IMO. Division by a number is defined as multiplication by the multiplicative inverse, and 0 has no multiplicative inverse because 0x = 1 has no solutions.
No, that’s what induction is. You prove the base case (e.g. n=1) and then prove that the (n+1) case follows from the (n) case. You may then conclude the result holds for all n, since we proved it holds for 1, which means it holds for 2, which means it holds for 3, and so on.
It’s not actually claiming that all horses are the same color, it’s an example of a flawed induction argument
Not really, you need to have a basic understanding at least
You might be thinking of a [connection of an affine bundle](https://en.wikipedia.org/wiki/Connection_(affine_bundle). You could learn it through classes (math grad programs usually have a sequence including general topology, differential topology/smooth manifolds, and differential geometry) or just read some books to get the parts you need to know.
Manifolds and differential forms are foundational concepts of differential topology, and connections are a foundational concept of differential geometry. They are mathematical building blocks used in modern physics, essentially enabling the transfer of multivariable calculus to arbitrary curved surfaces (without relying on an explicit embedding into Euclidean space). I think the joke is that physics students don’t typically learn the details of these building blocks, rather just the relevant results, and get confused when they’re emphasized.
For a tl;dr about the concepts mentioned:
A manifold is a curve, surface, or higher-dimensional object which locally resembles Euclidean space around each point (e.g. the surface of a sphere is a 2D manifold; tiny person standing on a big sphere perceives the area around them to resemble a flat 2D plane).
Differential forms are “things that can be integrated over a manifold of the corresponding dimension.” In ordinary calculus of 1 variable, that’s a suitably regular function (e.g. a continuous function), and we view such a function f(x) as a differential form by writing it as “f(x) dx.”
A connection is a way of translating local tangent vectors from one point on a manifold to another in a parallel manner, i.e. literally connecting the local geometries of different points on the manifold. The existence of a connection on a manifold enables one to reason consistently about geometric concepts on the whole manifold.
That’s what the /etc/foo.conf.d/ is for :DDDDD
It means they admit they were wrong and you were correct. As in, “I have been corrected.”
Not the same issue
The argument describes an algorithm that can be translated into code.
1/(1-x)^(2) at 0 is 1
(1/(1-x)^(2) - 1)/x = (1 - 1 + 2x - x^(2))/x = 2 - x at 0 is 2
(1/(1-x)^(2) - 1 - 2x)/x^(2) = ((1 - 1 + 2x - x^(2) - 2x + 4x^(2) - 2x(3))/x(2) = 3 - 2x at 0 is 3
and so on
Let f(x) = 1/((x-1)^(2)). Given an integer n, compute the nth derivative of f as f^((n))(x) = (-1)(n)(n+1)!/((x-1)(n+2)), which lets us write f as the Taylor series about x=0 whose nth coefficient is f^((n))(0)/n! = (-1)^(-2)(n+1)!/n! = n+1. We now compute the nth coefficient with a simple recursion. To show this process works, we make an inductive argument: the 0th coefficient is f(0) = 1, and the nth coefficient is (f(x) - (1 + 2x + 3x^(2) + … + nx(n-1)))/x(n) evaluated at x=0. Note that each coefficient appearing in the previous expression is an integer between 0 and n, so by inductive hypothesis we can represent it by incrementing 0 repeatedly. Unfortunately, the expression we’ve written isn’t well-defined at x=0 since we can’t divide by 0, but as we’d expect, the limit as x->0 is defined and equal to n+1 (exercise: prove this). To compute the limit, we can evaluate at a sufficiently small value of x and argue by monotonicity or squeezing that n+1 is the nearest integer. (exercise: determine an upper bound for |x| that makes this argument work and fill in the details). Finally, evaluate our expression at the appropriate value of x for each k from 1 to n, using each result to compute the next, until we are able to write each coefficient. Evaluate one more time and conclude by rounding to the value of n+1. This increments n.
Don’t think you can stack 2.4 million bananas on top of each other. By volume you’d need like 10^16 bananas to form everest
Your first sentence asserts the claim to be proved. Actually it asserts something much stronger which is also false, as e.g. 0.101001000100001… is a non-repeating decimal which doesn’t include “2”. While pi is known to be irrational and transcendental, there is no known proof that it is normal or even disjunctive, and generally such proofs are hard to come by except for pathological numbers constructed specifically to be normal/disjunctive or not.
It’s (co)homology, not Cartesian algebra. There’s also a typo in the meme. I have a fixed version and solution somewhere.
Yes, the egg needs to be barely cooked before battering and frying, which makes it really annoying to shell + batter + fry them
foo terminal
foot
CSS is still used. Modern web toolkits like bootstrap and tailwind can reduce or eliminate the need to write CSS explicitly. Some tools like Sass extend CSS. They all generally produce regular CSS that gets read by the browser.
It’s not all of Microsoft, you just can’t download ISOs from their website.
There’s not much coherent algebraic structure left with these “definitions.” If Ωx=ΩΩ=Ω then there is no multiplicative identity, hence no such thing as a multiplicative inverse.