Here’s an example (first in Haskell then in Go), lets say you have some types/functions:
- type Possible a = Either String a
- data User = User { name :: String, age :: Int }
- validateName :: String -> Possible String
- validateAge :: Int -> Possible Int
then you can make
mkValidUser :: String -> Int -> Possible User
mkValidUser name age = do
validatedName ← validateName name
validatedAge ← validateAge age
pure $ User validatedName validatedAge
for some reason <- in lemmy shows up as <-
inside code blocks, so I used the left arrow unicode in the above instead
in Go you’d have these
- (no
Possible
type alias, Go can’t do generic type aliases yet, there’s an open issue for it) - type User struct { Name string; Age int }
- func validateName(name string) (string, error)
- func validateAge(age int) (int, error)
and with them you’d make:
func mkValidUser(name string, age int) (*User, error) {
validatedName, err = validateName(name)
if err != nil {
return nil, err
}
validatedAge, err = validateAge(age)
if err != nil {
return nil, err
}
return User(Name: validatedName, Age: validatedAge), nil
}
In the Haskell, the fact that Either
is a monad is saving you from a lot of boilerplate. You don’t have to explicitly handle the Left
/error case, if any of the Either
s end up being a Left
value then it’ll correctly “short-circuit” and the function will evaluate to that Left
value.
Without using the fact that it’s a functor/monad (e.g you have no access to fmap/>>=/do syntax), you’d end up with code that has a similar amount of boilerplate to the Go code (notice we have to handle each Left
case now):
mkValidUser :: String -> Int -> Possible User
mkValidUser name age =
case (validatedName name, validateAge age) of
(Left nameErr, _) => Left nameErr
(_, Left ageErr) => Left ageErr
(Right validatedName, Right validatedAge) =>
Right $ User validatedName validatedAge
Note: Lemmy code blocks don’t play nice with some symbols, specifically < and & in the following code examples
This isn’t a language level issue really though, Haskell can be equally ergonomic.
The weird thing about
?.
is that it’s actually overloaded, it can mean:A?
that returnsB?
A?
that returnsB
you’d end up with
B?
in either caseSay you have these functions
toInt :: String -> Maybe Int double :: Int -> Int isValid :: Int -> Maybe Int
and you want to construct the following using these 3 functions
fn :: Maybe String -> Maybe Int
in a Rust-type syntax, you’d call
str?.toInt()?.double()?.isValid()
in Haskell you’d have two different operators here
str >>= toInt <&> double >>= isValid
however you can define this type class
class Chainable f a b fb where (?.) :: f a -> (a -> fb) -> f b instance Functor f => Chainable f a b b where (?.) = (<&>) instance Monad m => Chainable m a b (m b) where (?.) = (>>=)
and then get roughly the same syntax as rust without introducing a new language feature
str ?. toInt ?. double ?. isValid
though this is more general than just
Maybe
s (it works with any functor/monad), and maybe you wouldn’t want it to be. In that case you’d do thisclass Chainable a b fb where (?.) :: Maybe a -> (a -> fb) -> Maybe b instance Chainable a b b where (?.) = (<&>) instance Chainable a b (Maybe b) where (?.) = (>>=)
restricting it to only maybes could also theoretically help type inference.