xkcd: Coordinate Precision but pi (π)?

I tried looking for some answer but found mostly

  • People reciting pi
  • People teaching how to memorize pi
  • How to calculate pi using different formula
  • How many digits NASA uses

Update question to be more specific

In case someone see this later, what is the most advanced object you can build or perform its task, with different length of pi?

0, 3 => you can’t make a full circle

1, 3.1 => very wobbly circle

2, 3.14 => perfect hole on a beach

3, 3.142 => ??

4, 3.1416 => ??

5, 3.14159 => ??

Old question below

In practice, the majority of people will never require any extra digit past 3.14. Some engineering may go to 3.1416. And unless you are doing space stuff 3.14159 is probably more than sufficient.

But at which point do a situation require extra digit?
From 3 to 3.1 to 3.14 and so on.

My non-existing rubber duck told me I can just plug these into a graphing calculator. facepalm

y=(2πx−(2·3.14x))

y=abs(2πx−(2·3.142x))

y=abs(2πx−(2·3.1416x))

y=(2πx−(2·3.14159x))

Got adequate answer from @dual_sport_dork and @howrar
Any extra example of big object and its minimum pi approximation still welcome.

  • HobbitFoot @thelemmy.club
    link
    fedilink
    English
    arrow-up
    3
    ·
    1 year ago

    So, in terms of accuracy required, an old structural book I have includes a “functions of numbers” section which has various things including the square, the square root, the log, and the circumference of a circle with that diameter. It shows pi as 3.142. Outside of alignments, I would expect that to be good enough for most civil engineers.