The draw-back with sodium batteries needs to be known, because they won’t replace lithium anytime soon.
The density is lower, which is a great problem in EVs.
Not trying to be negative, but for an EV, or anything handheld, you get more weight for less power. Which is essential in a car, that uses more power the heavier it is.
What sodium IS the best at, are use cases where weight and size doesn’t matter. Like with battery farms.
While you’re not wrong, sodium batteries coming on the market have 200 Wh/kg. This is comparable to where LFP batteries were a few years ago. That means the newer sodium batteries are about as good as what’s in lots of EVs right now.
The ceiling is going to be lower than with lithium. Sodium ions themselves weigh about 3 times more than lithium, for the same +1 charge. So it’s not just that sodium is a certain number of years behind lithium. It’s that it’ll likely plateau at a point permanently behind where lithium will likely be.
Price per kw and price per kwh stored. And price per kwh over the expected lifetime of the battery itself (longevity and reliability and safety and disposal will have to be factored into total cost of ownership).
Sodium could easily replace lithium in EV applications if people would acknowledge that only 2% of trips are more than 50 miles. Though it’s probably moreso the auto industry’s fault that people have this assumption they need to prepare for a three hundred mile journey on a moments notice.
If manufacturers were putting out cars that had four figure price tags with double digit ranges, they would become the best selling vehicles within a decade and no one would care if it was sodium, lithium, or sawdust. Of course, there is less profit to be made from smaller vehicles and so the corporations won’t bother.
That’s assuming you don’t have issues charging at where you live, which is a pretty big if for a lot of people. A 300 Mi charge would mean if you can’t charge daily, you would be able to go a couple of days without having to do so.
A 300 Mi charge would mean if you can’t charge daily, you would be able to go a couple of days without having to do so.
Given most trips are less than 3 miles, if you had a 300 mile range vehicle, that’s about three months of average driving, not a couple of days. My point was that people don’t go on long drives the vast majority of time and don’t more than fifty or so miles of range.
I’ll use Tesla as the example here only because it’s the prominent electric car brand. Directly from them:
A 120 volt outlet will supply 2 to 3 miles of range per hour of charge. If you charge overnight and drive less than 30 to 40 miles per day, this option should meet your typical charging needs.
They go one to say you can get a 10x improvement on the miles per hour when charging from a 240v outlet. Even accounting for installation of a new outlet to the garage or side of the house, this would be far cheaper than buying a vehicle with hundreds of miles of range and using a supercharger every other week.
I live about 5 miles from work. I usually drive about 20 miles a day, so about 140 a week. I also rent an apt where there are no options for a charger. I considered a mini Cooper se and even a fiat 500e for a bit (it’s really cheap when you can find it), but once I looked my driving, I was only going to be comfortable with a 200 mile range for the occasional (once or twice a month) trips that are 100 miles one way. While chargers along the trip might be available, most times I’ve seen them they are clearly broken (provided it isn’t tesla, which seems to repair them). I do live in a city, but even then the 100 miles range would be tough to accommodate. Not saying impossible (I’ve seen electric mustangs and electric Chevrolets in my apartment), but a range of 100 miles is a lot less feasible for most than I think the data suggests, although that might also be fine if charging was faster.
Well, sounds great for any non mobile storage then. Don’t think anybody cares whether their 10kWh solar battery is twice the size and weight if it’s half the price.
Lithium batteries are often -30 to 80C, but that’s just saying what’s possible to squeeze some kind of voltage out of them. Basic principle is that the colder it is, the harder it is for chemical reactions to happen, and thus this will affect all chemical batteries to some degree.
The draw-back with sodium batteries needs to be known, because they won’t replace lithium anytime soon.
The density is lower, which is a great problem in EVs.
Not trying to be negative, but for an EV, or anything handheld, you get more weight for less power. Which is essential in a car, that uses more power the heavier it is.
What sodium IS the best at, are use cases where weight and size doesn’t matter. Like with battery farms.
In this case they are much better than lithium.
While you’re not wrong, sodium batteries coming on the market have 200 Wh/kg. This is comparable to where LFP batteries were a few years ago. That means the newer sodium batteries are about as good as what’s in lots of EVs right now.
The ceiling is going to be lower than with lithium. Sodium ions themselves weigh about 3 times more than lithium, for the same +1 charge. So it’s not just that sodium is a certain number of years behind lithium. It’s that it’ll likely plateau at a point permanently behind where lithium will likely be.
But for static storage, only price/kw matters.
Price per kw and price per kwh stored. And price per kwh over the expected lifetime of the battery itself (longevity and reliability and safety and disposal will have to be factored into total cost of ownership).
Still only price and kw. 😤
Sodium could easily replace lithium in EV applications if people would acknowledge that only 2% of trips are more than 50 miles. Though it’s probably moreso the auto industry’s fault that people have this assumption they need to prepare for a three hundred mile journey on a moments notice.
If manufacturers were putting out cars that had four figure price tags with double digit ranges, they would become the best selling vehicles within a decade and no one would care if it was sodium, lithium, or sawdust. Of course, there is less profit to be made from smaller vehicles and so the corporations won’t bother.
That’s assuming you don’t have issues charging at where you live, which is a pretty big if for a lot of people. A 300 Mi charge would mean if you can’t charge daily, you would be able to go a couple of days without having to do so.
Given most trips are less than 3 miles, if you had a 300 mile range vehicle, that’s about three months of average driving, not a couple of days. My point was that people don’t go on long drives the vast majority of time and don’t more than fifty or so miles of range.
I’ll use Tesla as the example here only because it’s the prominent electric car brand. Directly from them:
They go one to say you can get a 10x improvement on the miles per hour when charging from a 240v outlet. Even accounting for installation of a new outlet to the garage or side of the house, this would be far cheaper than buying a vehicle with hundreds of miles of range and using a supercharger every other week.
I live about 5 miles from work. I usually drive about 20 miles a day, so about 140 a week. I also rent an apt where there are no options for a charger. I considered a mini Cooper se and even a fiat 500e for a bit (it’s really cheap when you can find it), but once I looked my driving, I was only going to be comfortable with a 200 mile range for the occasional (once or twice a month) trips that are 100 miles one way. While chargers along the trip might be available, most times I’ve seen them they are clearly broken (provided it isn’t tesla, which seems to repair them). I do live in a city, but even then the 100 miles range would be tough to accommodate. Not saying impossible (I’ve seen electric mustangs and electric Chevrolets in my apartment), but a range of 100 miles is a lot less feasible for most than I think the data suggests, although that might also be fine if charging was faster.
Yeah I see these as the answer to the people who think solar energy is bad because the sun goes down.
What other benefits do they have? Do they have less wear or are cheaper per Wh to produce?
Or at least, about to be when production ramps up further?
They are dirt cheap, don’t have the fire safety issues as some lithium chemistries (not all lithium chemistries do that), and sodium is abundant.
Well, sounds great for any non mobile storage then. Don’t think anybody cares whether their 10kWh solar battery is twice the size and weight if it’s half the price.
Thank you :)
Article says operating temperature range. -20 to 60 C
Lithium batteries are often -30 to 80C, but that’s just saying what’s possible to squeeze some kind of voltage out of them. Basic principle is that the colder it is, the harder it is for chemical reactions to happen, and thus this will affect all chemical batteries to some degree.